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Abstract
A hierarchy of nonlinear differential-difference equations associated with a
discrete isospectral problem is proposed, in which a typical differential-
difference equation is a discrete coupled derivative nonlinear Schrödinger
equation. With the help of the nonlinearization of the Lax pairs, the
hierarchy of nonlinear differential-difference equations is decomposed into
a new integrable symplectic map and a class of finite-dimensional integrable
Hamiltonian systems. Based on the theory of algebraic curve, the Abel–
Jacobi coordinates are introduced to straighten out the corresponding flows,
from which quasi-periodic solutions for these differential-difference equations
are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-
dimensional discrete coupled derivative nonlinear Schrödinger equation is
proposed and its quasi-periodic solutions are derived.

PACS numbers: 02.30.Ik, 02.30.Ks

1. Introduction

The derivative nonlinear Schrödinger (DNLS) equation

ivT + vXX + 2i(|v|2v)X = 0 (1.1)

arises in a wide variety of fields, such as plasma physics, electromagnetic waves in
ferromagnetic, antiferromagnetic or dielectric systems [1–10]. Integrability of the DNLS
equation was established in [11] with the derivative of one-soliton solution. And N-soliton
formulae, periodic solutions and almost periodic solutions for the DNLS equation have also
been obtained by using various approaches [12–17]. In [18], an integrable discretization of
the coupled DNLS equation is proposed by constructing the Lax pair. The discrete coupled
DNLS systems admit the reduction of complex conjugation between two dependent variables
and possess bi-Hamiltonian structure.
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In this paper, we propose a new integrable discretization of the coupled DNLS equation:

u(n)t = �

[
1

1 + u(n)v(n)
�

u(n)

1 + u(n)v(n)

− u(n)

(1 + u(n)v(n))2

(
u(n + 1)v(n)

1 + u(n + 1)v(n + 1)
+

u(n)v(n − 1)

1 + u(n − 1)v(n − 1)

)]
,

v(n)t = �∗
[ −1

1 + u(n)v(n)
�∗ v(n)

1 + u(n)v(n)

+
v(n)

(1 + u(n)v(n))2

(
u(n + 1)v(n)

1 + u(n + 1)v(n + 1)
+

u(n)v(n − 1)

1 + u(n − 1)v(n − 1)

)]
, (1.2)

where the difference operator �fn = fn+1 −fn and its adjoint �∗fn = fn−1 −fn. It is obvious
that (1.2) do not admit a reduction of complex conjugation between the potentials. Usually,
the system might exhibit singularities, solutions that blow up in finite time etc. The continuum
limit of (1.2) is exactly the coupled DNLS equations [11]

iuT − uXX + 2i(u2v)X = 0, ivT + vXX + 2i(uv2)X = 0, (1.3)

which are reduced to be the DNLS equation (1.1) as u = v∗. We first introduce a discrete
spectral problem and derive the corresponding hierarchy of nonlinear differential-difference
equations, in which a typical member is the discrete coupled DNLS equation (1.2). Based
on the nonlinearization approach of the Lax pair [19–21], a new symplectic map and a class
of new finite-dimensional Hamiltonian systems are derived, which are further proved to be
completely integrable in the Liouville sense [22–24]. Based on the theory of algebraic curves,
the straightening out of various flows is exactly given through the Abel–Jacobi coordinates. As
an application, quasi-periodic solutions for the hierarchy of nonlinear differential-difference
equations are obtained. Moreover, a (2+1)-dimensional discrete coupled DNLS equation is
proposed with the aid of the first two nontrivial equations in this hierarchy

u(n)t = u(n)yy − 2�
u(n)2v(n − 1)

(1 + u(n)v(n))2(1 + u(n − 1)v(n − 1))
,

v(n)t = −v(n)yy + 2�∗ u(n + 1)v(n)2

(1 + u(n)v(n))2(1 + u(n + 1)v(n + 1))
,

(1.4)

whose quasi-periodic solutions of this equation is given in the meantime. It is shown that the
continuous limit of (1.4) is a (2+1)-dimensional coupled DNLS equation

iuT − uYY + 2i(u2v)X = 0, (1.5)

ivT + vYY + 2i(v2u)X = 0, (1.6)

which is become into a (2+1)-dimensional DNLS equation as u = v∗:

ivT + vYY + 2i(|v|2v)X = 0. (1.7)

The outline of the present paper is as follows. In section 2, we introduce a discrete
spectral problem and derive the corresponding hierarchy of nonlinear differential-difference
equations. It is proved that the continuous limit of the second member in the hierarchy is
exactly the coupled DNLS equation. In section 3, we give a Bargmann constraint between
the potentials and eigenfunctions, from which a new symplectic map and its involutive system
of conserved integrals are obtained. In section 4, solutions of these nonlinear differential-
difference equations are decomposed into solving compatible Hamiltonian systems of ordinary
differential equations and the symplectic map. In section 5, with the help of elliptic coordinates
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and quasi-Abel–Jacobi coordinates, the integrability of the symplectic map and the resulting
finite-dimensional Hamiltonian systems is proved rigorously. In sections 6 and 7, the Abel–
Jacobi coordinates are introduced, by which the straightening out of the continuous flow and
the discrete flow are studied in detail. In section 8, based on the Riemann–Jacobi inversion,
quasi-periodic solutions for the hierarchy of nonlinear differential-difference equations are
obtained by using the Riemann theta functions. Moreover, we propose a (2+1)-dimensional
discrete coupled DNLS equation and derive its quasi-periodic solutions and the continuous
limit.

2. Discrete nonlinear evolution equations

Let E be the shift operator defined by Ef (n) = f (n + 1), and E−1f (n) = f (n − 1),� =
E − 1,�∗ = E−1 − 1. We first introduce a discrete spectral problem

Eχ(n) = U(n)χ(n), U(n) = 1√
1 + λ

(
1 + λ(1 + u(n)v(n)) λu(n)

v(n) 1

)
, (2.1)

which is a similar extension in [25]. Here λ is a constant spectral parameter, u(n) and
v(n) are two potentials. In order to derive a hierarchy of discrete nonlinear evolution
equations associated with (2.1), we introduce Lenard’s gradient sequence gj (n) = (Cj (n+ 1),

Bj (n), Aj (n))T by the recursion equation

Kngj−1(n) = Jngj (n), Jng0(n) = 0, j � 0 (2.2)

with the condition gj |(u(n),v(n))=0 = 0, (j � 1), where two operators Kn and Jn are defined
as [23]

Kn =

 0 � 0

−�∗ 0 0

−u(n) v(n) �

 , Jn =

 0 1 + u(n)v(n) −u(n)(1 + E)

−(1 + u(n)v(n)) 0 v(n)(1 + E)

−u(n) v(n) �

 .

The equation Jng0(n) = 0 has a special solution

g0(n) =
(

v(n)

1 + u(n)v(n)
,

u(n)

1 + u(n)v(n)
,

1

2

)T

, (2.3)

which is taken as a starting point. Then gj (n) is uniquely determined by the recursion
equation (2.2). It is easy to see that

g1(n) =


1

1+u(n)v(n)
�∗ v(n)

1+u(n)v(n)
− v(n)

(1+u(n)v(n))2

(
u(n+1)v(n)

1+u(n+1)v(n+1)
+ u(n)v(n−1)

1+u(n−1)v(n−1)

)
1

1+u(n)v(n)
� u(n)

1+u(n)v(n)
− u(n)

(1+u(n)v(n))2

(
u(n+1)v(n)

1+u(n+1)v(n+1)
+ u(n)v(n−1)

1+u(n−1)v(n−1)

)
− u(n)v(n−1)

(1+u(n)v(n))(1+u(n−1)v(n−1))

 . (2.4)

Assume that χ(n) satisfies the discrete spectral problem (2.1) and the auxiliary problem

χ(n)tm = V (n)(m)χ(n), V (n)(m) =
(

λA(m)
n λB(m)

n

C(m)
n −λA(m)

n

)
(2.5)

with

A(m)
n =

m∑
j=0

Aj(n)λm−j , B(m)
n =

m∑
j=0

Bj(n)λm−j , C(m)
n =

m∑
j=0

Cj(n)λm−j .
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Then the compatibility condition between (2.1) and (2.5) yields the discrete zero-curvature
equation, U(n)tm +U(n)V (n)(m) −V (n+ 1)(m)U(n) = 0, which is equivalent to the hierarchy
of discrete evolution equations

(u(n), v(n))Ttm = Xm(n), m � 0 (2.6)

with

Xm(n) =
(

0 �

−�∗ 0

) (
Cm(n + 1)

Bm(n)

)
= PKngm(n) = PJngm+1(n),

where P is the projective map γ = (γ 1, γ 2, γ 3)T → (γ 1, γ 2)T . The first two members
in (2.6), (t1 = t), are as follows:

u(n)t0 = �
u(n)

1 + u(n)v(n)
, v(n)t0 = −�∗ v(n)

1 + u(n)v(n)
(2.7)

and

u(n)t = �

[
1

1 + u(n)v(n)
�

u(n)

1 + u(n)v(n)

− u(n)

(1 + u(n)v(n))2

(
u(n + 1)v(n)

1 + u(n + 1)v(n + 1)
+

u(n)v(n − 1)

1 + u(n − 1)v(n − 1)

)]
,

v(n)t = �∗
[ −1

1 + u(n)v(n)
�∗ v(n)

1 + u(n)v(n)

+
v(n)

(1 + u(n)v(n))2

(
u(n + 1)v(n)

1 + u(n + 1)v(n + 1)
+

u(n)v(n − 1)

1 + u(n − 1)v(n − 1)

)]
, (2.8)

which is exactly (1.2). Here we the explicit expressions of V (n)(m) for the cases m = 0, 1:

V (n)(0) =
( 1

2λ λ u(n)

1+u(n)v(n)

v(n−1)

1+u(n−1)v(n−1)
− 1

2λ

)
, V (n)(1) =

(
λA(1)

n λB(1)
n

C(1)
n −λA(1)

n

)
, (2.9)

which determine the temporal part of the Lax pair for (2.7) or (2.8), respectively, where

A(1)
n = 1

2
λ − u(n)v(n − 1)

(1 + u(n)v(n))(1 + u(n − 1)v(n − 1))
,

B(1)
n = λ

u(n)

1 + u(n)v(n)
+

1

1 + u(n)v(n)
�

u(n)

1 + u(n)v(n)

− u(n)

(1 + u(n)v(n))2

(
u(n + 1)v(n)

1 + u(n + 1)v(n + 1)
+

u(n)v(n − 1)

1 + u(n − 1)v(n − 1)

)
,

C(1)
n = λ

v(n − 1)

1 + u(n − 1)v(n − 1)
+

1

1 + u(n − 1)v(n − 1)
�∗ v(n − 1)

1 + u(n − 1)v(n − 1)

− v(n − 1)

(1 + u(n − 1)v(n − 1))2

(
u(n)v(n − 1)

1 + u(n)v(n)
+

u(n − 1)v(n − 2)

1 + u(n − 2)v(n − 2)

)
.

In what follows, we discuss the continuous limit of (2.8). In the same way similar to [26],
the functions u(n) and v(n) on a lattice with a small step h are defined as

u(n) = iu(x)h, v(n) = v(x)h, Ek(u) = iu(x + kh)h, Ek(v) = v(x + kh)h.

(2.10)
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Substituting the above expressions into equation (2.8) and expanding it in a power series in h,
we arrive at

iut = iuxxh
2 + 4uuxvh3 + (2u2vx + iuxxx)h

3 + o(h4),

vt = −vxxh
2 − 4iuvvxh

3 − (2iuxv
2 − vxxx)h

3 + o(h4).

Under the transformation T = ih4t, X = hx, we obtain by taking h → 0 that the coupled
DNLS equation

iuT − uXX + 2i(u2v)X = 0, ivT + vXX + 2i(uv2)X = 0, (2.11)

which is reduced to the DNLS equation (1.1) as u = v∗.
Let us introduce the generating function of {gj (n)}

gλ(n) =
∞∑

j=0

gj (n)λ−j−1, (2.12)

which satisfies

(Kn − λJn)gλ(n) = 0. (2.13)

Proposition 2.1. Let σ(u(n), v(n), λ) be a linear map defined by

V (n) = σ(u(n), v(n), λ)[γ (n)] =
(

λγ 3(n) λγ 2(n)

E−1γ 1(n + 1) −λγ 3(n)

)
. (2.14)

Then the discrete commutative relation

(EV (n))U(n) − U(n)V (n) = U∗(u(n), v(n), λ)(P(Kn − λJn)γ (n)) (2.15)

holds for any function γ (n) = (γ 1(n + 1), γ 2(n), γ 3(n))T , where

U∗(u(n), v(n), λ)

(
δu(n)

δv(n)

)
= d

dε

∣∣∣∣
ε=0

U(u(n) + εδu(n), v(n) + εδv(n), λ)

= 1√
1 + λ

(
λ(v(n)δu(n) + u(n)δv(n)) λδu(n)

δv(n) 0

)
.

Corollary 2.2. Equation (Kn − λJn)γ (n) = 0 implies det σ [γ (n)] = constant independent
of n.

Proof. By (2.15), (Kn − λJn)γ (n) = 0 means that V (n + 1) = U(n)V (n)U(n)−1. Thus
det V (n + 1) = det V (n). �

By corollary 2.2, det σ [gλ] = constant implies that

det σ [gλ] = − 1
4 (2.16)

with the aid of the initial condition in (2.2).

3. A new symplectic map

In this section, we shall discuss the nonlinearization of the discrete eigenvalue problem (2.1)
to give an integrable symplectic map. Here and in what follows, we stipulate usually to
write f (n) = f, f (n + k) = Ekf, k ∈ Z , for the sake of simplicity. Assume that λk and
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χ = (pk, qk)
T , (1 � k � N), are N distinct eigenvalues and the associated eigenfunctions for

the discrete spectral problem (2.1), respectively. A direct calculation shows that

−�p2
k = −λk[(1 + uv)p2

k + u(1 + E)pkqk],
�∗λk(Eqk)

2 = λ2
k(1 + uv)(Eqk)

2 − λkv(1 + E)pkqk,

−uλk(Eqk)
2 − vp2

k + �pkqk = 0,

(3.1)

which implies

(K − λkJ )∇̃λk = 0 (3.2)

with

∇̃λk =
(

∇λk

pkqk

)
, ∇λk =

(
δλk

δu

δλk

δv

)
=

(
λk(Eqk)

2

−p2
k

)
. (3.3)

Let us consider N copies of spectral problem (2.1)

E

(
pk

qk

)
= 1√

1 + λk

(
1 + λk(1 + uv) λku

v 1

) (
pk

qk

)
, 1 � k � N (3.4)

and introduce the Bargmann constraint [19]

Pg0 =
N∑

k=1

∇λk, (3.5)

which can be written as
v

1 + uv
= 〈�Eq,Eq〉, u

1 + uv
= −〈p, p〉, (3.6)

where 〈., .〉 stands for the canonical inner product in RN,� = diag(λ1, . . . , λN), p =
(p1, . . . , pN)T , q = (q1, . . . , qN)T . Utilizing (3.6) and (3.4), we have a polynomial

(〈Ap,p〉 − 〈p, p〉)v2 + (2〈Ap, q〉 − 1)v + 〈Aq, q〉 = 0, (3.7)

where A = diag
(

λ1
1+λ1

, . . . , λN

1+λN

)
. Resorting to (3.7) and the second expression of (3.6), we

obtain

u = − 〈p, p〉(〈Ap,p〉 − 〈p, p〉)
〈Ap,p〉 − 1

2 〈p, p〉 − 〈p, p〉〈Ap, q〉 + h0〈p, p〉 ,

v = 1

〈Ap,p〉 − 〈p, p〉
(

1

2
− 〈Ap, q〉 + h0

) (3.8)

with

h2
0 =

(
〈Ap, q〉 − 1

2

)2

+ 〈Aq, q〉(〈p, p〉 − 〈Ap,p〉). (3.9)

Equation (3.8) can be written as

(u, v)T = f (p, q), (3.10)

where f (p, q) = (f1(p, q), f2(p, q)) is defined by the right side of (3.8). Substituting (3.8)
into (3.4) and writing it in a vector form, we arrive at

E

(
p

q

)
=

(
B + (1 + f1(p, q)f2(p, q))B� f1(p, q)B�

f2(p, q)B B

)(
p

q

)
= ϕ

(
p

q

)
(3.11)

with B = diag
(

1√
1+λ1

, . . . , 1√
1+λN

)
, B2 = I − A.

Proposition 3.1. ϕ is a symplectic map in (R2N, dp ∧ dq).
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Proof. Through direct calculations. �

In order to prove the integrability of ϕ, we define the Poisson bracket of two functions in
the symplectic space (R2N, dp ∧ dq)

{h1, h2} =
N∑

k=1

(
∂h1

∂qk

∂h2

∂pk

− ∂h1

∂pk

∂h2

∂qk

)
and a bilinear function Qλ(ξ, η) on RN

Qλ(ξ, η) = 〈(λI − �)−1ξ, η〉 =
N∑

i=1

ξiηi

λ − λi

.

We introduce

Gλ =
N∑

k=1

∇̃λk

λ − λk

+
1

λ
δ0 = 1

λ

λQλ(�Eq,Eq)

−λQλ(p, p)

Qλ(�p, q) + 1
2

 , (3.12)

with δ0 = (
0, 0, 1

2 − 〈p, q〉)T
, which satisfies

(K − λJ )Gλ = 0 (3.13)

with the aid of (3.2). Based on proposition 2.1, we define a Lax matrix Vλ by

Vλ ≡ σ [Gλ] =
(

1
2 + Qλ(�p, q) −λQλ(p, p)

Qλ(�q, q) − 1
2 − Qλ(�p, q)

)
, (3.14)

that satisfies the stationary discrete zero-curvature equation

(EVλ)U − UVλ = 0. (3.15)

According to corollary 2.2, Fλ = det Vλ is invariant under the action of the symplectic map ϕ,
and yields the generating function of integrals of motion as follows:

Fλ = −1

4
− Qλ(�p, q) − Qλ(�p, q)2 + λQλ(p, p)Qλ(�q, q) = −1

4
+

∞∑
m=0

1

λm+1
Fm

(3.16)

with

F0 = −〈�p, q〉 + 〈p, p〉〈�q, q〉, (3.17)

F1 = −〈�2p, q〉 − 〈�p, q〉2 + 〈p, p〉〈�2q, q〉 + 〈�p,p〉〈�q, q〉, (3.18)

Fm = −〈�m+1p, q〉 + 〈p, p〉〈�m+1q, q〉 +
m−1∑
j=0

∣∣∣∣〈�j+1p, p〉 〈�m−jp, q〉
〈�j+1p, q〉 〈�m−j q, q〉

∣∣∣∣ . (3.19)

Here the expansion, Qλ(ξ, η) = ∑∞
m=0 λ−m−1〈�mξ, η〉, is used.

For the sake of convenience in a series of later calculations, we view Fλ as Hamiltonian
in the symplectic space (R2N, dp ∧ dq) and denote the variable of Fλ flow by τλ. A direct
calculation gives the canonical equations of Fλ flow:

d

dτλ

(
pk

qk

)
= I∇kFλ =

(− ∂Fλ

∂qk

∂Fλ

∂pk

)
= W(λ, λk)

(
pk

qk

)
, (3.20)
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where

W(λ,µ) = 2λ

λ − µ
Vλ + 2

(
−V

(11)
λ −V

(12)
λ

0 V
(11)
λ

)
. (3.21)

Therefore, a direct calculation shows that the following assertion holds.

Proposition 3.2. The matrix Vµ satisfies the Lax equation

d

dτλ

Vµ = [W(λ,µ), Vµ]. (3.22)

Corollary 3.3.

{Fµ, Fλ} = 0, ∀λ,µ ∈ C, (3.23)

{Fk, Fj } = 0, ∀j, k = 0, 1, 2 . . . . (3.24)

Proof. Equation (3.22) implies that Fµ = det Vµ is invariant along the τλ flow. And the
derivative of the function Fµ along the Fλ flow is exactly the Poisson bracket, that is

{Fµ, Fλ} = d

dτλ

Fµ = 0.

Substituting expansion (3.16) into the above expression, we obtain by comparing the same
power of λ and µ that {Fk, Fj } = 0,∀j, k = 0, 1, 2 . . . . �

4. Decomposition of discrete soliton equations

It is easy to see that (3.5) can be written as g0 = ∑N
j=1 ∇̃λj + δ0. Operating with J−1K upon

this expression k times and noting ker J = {cg0|∀c} give
N∑

j=1

λj
k∇̃λj = gk + c1gk−1 + · · · + ckg0, (k � 1) (4.1)

in view of (2.2) and (3.2), where ck is a constant of motion.

Proposition 4.1. The solution (p(n), q(n))T = ϕn(p0, q0)
T of the discrete flow generated

by the symplectic map ϕ is mapped by f into a solution of the stationary discrete nonlinear
equation

XN + CN1XN−1 + · · · + CNNX0 = 0. (4.2)

Proof. Define a polynomial

a(λ) =
N∏

j=1

(λ − λj ) =
N∑

k=0

aN−kλ
k. (4.3)

Multiplied by aN−k and summed with respect to k from 0 to N, we arrive at

0 =
N∑

j=1

a(λj )∇̃λj = gN + CN1gN−1 + · · · + CNNg0, (4.4)

where

CN(N−k) = aN−k +
N−k∑
l=1

aN−k−lcl .

Operating with PK on (4.4) yields (4.2). �
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Proposition 4.2. Under constraint (3.5), functions Gλ and gλ have a direct relation

Gλ = cλgλ (4.5)

with

cλ = 1 +
∞∑

k=1

ckλ
−k.

Proof. Using (3.12) and (4.1), we have

Gλ =
N∑

j=1

∇̃λj

λ − λj

+
1

λ
δ0

=
∞∑

k=1

1

λk+1
(gk + c1gk−1 + · · · + ckg0) + λ−1g0 = cλgλ.

�

As a corollary, we get the expression of the Lax matrix Vλ and the generating function Fλ

of conserved integrals :

Vλ = σ(λ)[Gλ] = σ(λ)[cλgλ], (4.6)

Fλ = cλ
2det σ [gλ] = − 1

4cλ
2. (4.7)

Let us introduce the generating function Hλ by cλ = 1 − 4Hλ. Then we have

(1 − 4Hλ)
2 = −4Fλ, (4.8)

which implies that

H0 = 1

2
F0, H1 = 1

2

(
F1 + F0

2),
Hm = 1

2
Fm + 2

∑
j+k=m−1

j,k�0

HjHk, m � 1
(4.9)

with the help of the expansion of the generating function

Hλ =
∞∑

m=0

Hmλ−m−1. (4.10)

Proposition 4.3. The functions {Hm},m � 0, are in involution in pairs, {Hm,Hl} = 0, for
any m, l � 0.

Proof. The involutivity of {Hk} is based on the equalities

{Fµ, Fλ} = 1
16 {(1 − 4Hλ)

2, (1 − 4Hµ)2} = 16
√

FµFλ{Hµ,Hλ}
and

{Hµ,Hλ} = 1

16
√

FλFµ

{Fµ, Fλ} = 0.

�

Denote the variables of Hλ flow and Hm flow by tλ and tm, respectively. By the Leibnitz
rule of the Poisson bracket, we get

{ψ,Hλ} = 1

2cλ

{ψ,Fλ} (4.11)
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for any smooth function ψ due to (4.8), which implies that

d

dtλ
= 1

2cλ

d

dτλ

. (4.12)

Utilizing (3.6), (3.20) and the third expression of (3.1), we arrive at〈
�Eq,Eqτλ

〉 = −Qλ(�
2Eq,Eq) + 2〈�Eq,Eq〉Qλ(�Ep,Eq),〈

p, pτλ

〉 = Qλ(�p, p) − 2〈p, p〉Qλ(�p, q),

−uQλ(�Eq,Eq) − vQλ(p, p) + λ−1�Qλ(�p, q) = 0

(4.13)

and

uτλ
= 2(1 + uv)

1 − uv

(
u2

〈
�Eq,Eqτλ

〉 − 〈
p, pτλ

〉)
,

vτλ
= 2(1 + uv)

1 − uv

(〈
�Eq,Eqτλ

〉 − v2
〈
p, pτλ

〉)
.

(4.14)

Substituting the first two expressions of (4.13) into (4.14) and using the third expression
of (4.13), we obtain

d

dτλ

(
u

v

)
=

(
−2λ(1 + uv)Qλ(p, p) − 2u(1 + E)

(
1
2 + Qλ(�p, q)

)
−2λ(1 + uv)Qλ(�Eq,Eq) + 2v(1 + E)

(
1
2 + Qλ(�p, q)

))
= 2λPJGλ, (4.15)

which gives rise to

d

dtλ

(
u

v

)
= λPJgλ (4.16)

in view of (4.12). Hence we get the following assertion.

Proposition 4.4. Let (p(n, tm), q(n, tm))T be a compatible solution of the discrete ϕ

flow (3.11) and Hm flow

∂

∂tm

(
p

q

)
= I∇Hm =

(−∂Hm

∂q

∂Hm

∂p

)
. (4.17)

Then (u(n, tm), v(n, tm))T = f (p(n, tm), q(n, tm)) solves equation (2.6).

Especially, for m = 0, (4.17) is reduced to

pt0 = −∂H0

∂q
= 1

2
�p − 〈p, p〉�q,

qt0 = ∂H0

∂p
= −1

2
�q + 〈�q, q〉p

(4.18)

with

H0 = −1

2
〈�p, q〉 +

1

2
〈p, p〉〈�q, q〉. (4.19)
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5. Elliptic coordinates and functional independence

It is easy to see that one of Fλ, V
(12)
λ , V

(21)
λ , as a rational function of λ, has simple poles at

λ′
j s, since the coefficients of (λ − λj )

2 is zero in Fλ

Fλ = λQλ(p, p)Qλ(�q, q) −
(

1

2
+ Qλ(�p, q)

)2

= − b(λ)

4a(λ)
= − R(λ)

4a(λ)2
, (5.1)

V
(12)
λ = −λQλ(p, p) = −〈p, p〉λm(λ)

a(λ)
, (5.2)

V
(21)
λ = Qλ(�q, q) = 〈�q, q〉n(λ)

a(λ)
, (5.3)

with

a(λ) =
N∏

k=1

(λ − λk), b(λ) =
N∏

k=1

(λ − λN+k), m(λ) =
N−1∏
k=1

(λ − µk),

n(λ) =
N−1∏
k=1

(λ − νk), R(λ) = a(λ)b(λ) =
2N∏
k=1

(λ − λk),

where µk and νk are called elliptic coordinates. By comparing the coefficients of λ−m in the
expansions of (5.2) and (5.3), we have

〈�p,p〉
〈p, p〉 =

N∑
k=1

λk −
N−1∑
k=1

µk, (5.4)

〈�2q, q〉
〈�q, q〉 =

N∑
k=1

λk −
N−1∑
k=1

νk. (5.5)

Using (4.18), (5.4) and (5.5), we arrive at

∂t0 ln〈p, p〉 =
N∑

k=1

λk −
N−1∑
k=1

µk − 2〈�p, q〉,

∂t0 ln〈�q, q〉 =
N−1∑
k=1

νk −
N∑

k=1

λk + 2〈�p, q〉,
(5.6)

which, together with (4.19), imply

∂t0 ln(〈�p, q〉 + κ0) =
N−1∑
k=1

(νk − µk), (5.7)

where κ0 = 2H0. Substituting (3.6) into (5.6) yields

∂t0 ln
u

1 + uv
=

N−1∑
k=1

µk −
N∑

k=1

λk + 2〈�p, q〉,

∂t0 ln
v

1 + uv
=

N−1∑
k=1

Eνk −
N∑

k=1

λk + 2E〈�p, q〉.
(5.8)
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The calculation of the evolution of the elliptic coordinates along the Fλ flow is based on
the components of the Lax equation (3.22):

dVµ
(12)

dτλ

= 4µVλ
(11)Vµ

(12) − 4µVλ
(12)Vµ

(11)

λ − µ
, (5.9)

dVµ
(21)

dτλ

= 4λVλ
(21)Vµ

(11) − 4µVλ
(11)Vµ

(21)

λ − µ
. (5.10)

According to (5.1), we arrive at

V (11)
µk

=
√

R(µk)

2a(µk)
, V (11)

νk
=

√
R(νk)

2a(νk)
,

1

2
√

R(µk)

dµk

dτλ

= − λm(λ)

(λ − µk)a(λ)m′(µk)
, (5.11)

1

2
√

R(νk)

dνk

dτλ

= λn(λ)

(λ − νk)a(λ)n′(νk)
. (5.12)

Resorting to the interpolation formula, with degrees not more than g = N − 1, we have
(j = 1, 2, . . . , N − 1),

g∑
k=1

µk
g−j

2
√

R(µk)

dµk

dτλ

= −
g∑

k=1

λm(λ)µk
g−j

a(λ)(λ − µk)m′(µk)
= −λg−j+1

a(λ)
, (5.13)

g∑
k=1

νk
g−j

2
√

R(νk)

dνk

dτλ

=
g∑

k=1

λn(λ)νk
g−j

a(λ)(λ − νk)n′(νk)
= λg−j+1

a(λ)
. (5.14)

These formulae lead naturally to the consideration of the elliptic curve � given by the affine
equation

ξ 2 − 1
4R(λ) = 0.

The genus is N − 1 since deg R = 2N. Denote P(λ) = (
λ, ξ = 1

2

√
R(λ)

)
. The usual

holomorphic differentials on �

w̃j = λg−j

2
√

R(λ)
dλ, 1 � j � N − 1, (5.15)

imply the introduction of the quasi-Abel–Jacobi coordinates

φ̃j =
∑
PεD1

∫ P

P0

w̃j , ψ̃j =
∑
PεD2

∫ P

P0

w̃j , 1 � j � g. (5.16)

with fixed point P0 ∈ �, and the divisor

D1 =
g∑

j=1

P(µj ), D2 =
g∑

j=1

P(νj ).

Then (5.13) and (5.14) are written as

dφ̃j

dτλ

= −λN−j

a(λ)
,

dψ̃j

dτλ

= λN−j

a(λ)
. (5.17)
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It is easy to see that coefficients in expansion [27]

λN

a(λ)
= 1

(1 − λ1λ−1) · · · (1 − λNλ−1)
= 1 +

∞∑
j=1

Ajλ
−j (5.18)

can be determined recursively by

A0 = 1, A1 = s1, Ak = 1

k

sk +
∑

i+j=k,i,j�1

siAj

 , (5.19)

where sl = ∑N
k=1 λk

l. Comparing the coefficients of λ−m in the expansion dφ̃s

dτλ
yields

dφ̃s

dτm

= {φ̃s , Fm} = −Am−s+1, 1 � s � N − 1, m � 0,

with the supplementary definition A−k = 0, (k = 1, 2, . . .). Here τk stand for the variable of
the Fk flow. Therefore, we obtain

(
dφ̃

dτ0
,

dφ̃

dτ1
, . . . ,

dφ̃

dτN−2

)
= −



1 A1 A2 · · · AN−2

1 A1 · · · AN−3

. . .
. . .

...

. . . A1

1


, (5.20)

where φ̃ = (φ̃1, . . . , φ̃N−1)
T .

Proposition 5.1. (i) {F0, F1, . . . , FN−1} are functionally independent. (ii) {H0,H1, . . . ,

HN−1} are functionally independent.

Proof. Recall the expression of the Poisson bracket by means of the symplectic structure
ω2 = dp ∧ dq : {h1, h2} = ω2(Idh2, Idh1). Assume that

∑N−1
k=0 γk dFk = 0. Then we have

0 =
N−1∑
k=0

γk dFk(I dφ̃j ) =
N−1∑
k=0

γkω
2(I dFk, I dφ̃j ) =

N−1∑
k=0

γk{φ̃j , Fk}

=
N−1∑
k=0

γk

dφ̃j

dτk

(1 � j � N − 1), (5.21)

which implies γ0 = · · · = γN−1 = 0 since the coefficient of the determinant is equal to 1
by (5.20). Hence F0, . . . , FN−1 are functionally independent. By using (4.9), we obtain


dFo

dF1

...

dFN−1

 = 2



1 0 0 · · · 0
1 0 · · · 0

. . .
. . .

...

∗ . . . 0
1




dHo

dH1

...

dHN−1

 . (5.22)

Thus dH0, dH1, . . . , dHN−1 are also linearly independent. �

Noting that Fλ is invariant under the action of the symplectic map (3.11), which means
that Fm is also invariant. Noting (3.24), we have the assertions [22, 28, 29].
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Theorem 5.2. The symplectic map ϕ defined by (3.11) is completely integrable in the Liouville
sense.

Theorem 5.3. The systems (R2N, dp ∧ dq, Fm) and (R2N, dp ∧ dq,Hm) are completely
integrable in the Liouville sense.

6. Straightening out of the continuous flow

Let a1, b1, . . . , ag, bg, be the canonical basis of cycles on the hyperelliptic curve �, and

C = (Ajk)
−1
g×g, Ajk =

∫
ak

ω̃j . (6.1)

Then we have the normalized holomorphic differential by

ωs =
g∑

j=1

Cij ω̃j , ω = Cω̃ = (ω1, . . . , ωg)
T (6.2)

with the properties∫
ak

ωs = δsk,

∫
bk

ωs = Bsk, (6.3)

where the matrix B = (Bsk) is symmetric with positively definite imaginary part and is used
to construct the Riemann-theta function of � [30, 31]:

θ(ζ ) =
∑
zεzg

exp π
√−1(〈Bz, z〉 + 2〈ζ, z〉), ζ εCg. (6.4)

The Abel map A: Div(�) −→ J (�) = Cg/T is defined by

A(P ) =
∫ P

P0

ω, A
(∑

nkpk

)
=

∑
nkA(pk), (6.5)

where Div(�) is the divisor group and the lattice T is spanned by the periodic vectors {δj , Bj }
with components given by (6.3). We introduce the Abel–Jacobi coordinates

φ = A(D1) = Cφ̃, ψ = A(D2) = Cψ̃. (6.6)

Assume that sk = λk
1 + · · · + λk

2g+2, then the coefficients in [27]

λg+1

√
R(λ)

=
∞∑

k=0

�kλ
−k (6.7)

satisfies the recursive formula

�0 = 1, �1 = 1

2
s1, �k = 1

2k

sk +
∑

i+j=k,i,j�1

si�j

 . (6.8)

Let C1, C2, . . . , Cg be the column vectors of C. Then we have the expansion

λg+1

2
√

R(λ)
(C1λ

−1 + · · · + Cgλ
−g) =

∞∑
k=0

�kλ
−k−1, (6.9)

where the coefficients are given by

�0 = 1
2C1, �k = 1

2 (�kC1 + �k−1C2 + · · · + �k−g+1Cg). (6.10)
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Theorem 6.1. The Hk flow is straightened out by the Abel–Jacobi coordinates

dφ

dtk
= −�k,

dψ

dtk
= �k. (6.11)

Proof. According to (5.17) and (6.6), we obtain

dφ

dτλ

= C
dφ̃

dτλ

= − λN

a(λ)
(λ−1C1 + · · · + λ−(N−1)CN−1).

Therefore, we have from (4.12) that

dφ

dtλ
= 1

2cλ

dφ

dτλ

= − λN

2cλa(λ)
(λ−1C1 + · · · + λ−(N−1)CN−1)

= − λN

√
R(λ)

(λ−1C1 + · · · + λ−(N−1)CN−1)

= −
∞∑

k=0

�kλ
−k−1 (6.12)

in view of (4.7) and (5.1). In a similar way, we obtain

dψ

dtλ
=

∞∑
k=0

�kλ
−k−1,

which, together with (6.12), implies (6.11). The proof is completed. �

7. Straightening out of the discrete flow

In this section, we shall derive the straightening out of the discrete flow. We start from the
spectral problem (2.1) with χ(n) = (p(n), q(n))T . Assume that the fundamental solution
matrix of (2.1) is as follows:

M(n) = (χ1(n), χ2(n)) =
(

p(1)(n) p(2)(n)

q(1)(n) q(2)(n)

)
, M(0) =

(
1 0
0 1

)
, (7.1)

which can be expressed as

M(n + 1) = U(n)U(n − 1) · · · U(0). (7.2)

By mathematical induction, it is easy to prove that

p(1)(n) =
∏n−1

j=0(1 + u(j)v(j))

(
√

1 + λ)n

[
λn + λn−1

(
n−1∑
j=0

1

1 + u(j)v(j)

+
n−2∑
j=0

u(j + 1)v(j + 1)

(1 + u(j)v(j))(1 + u(j + 1)v(j + 1))

)
+ · · ·

]
,

p(2)(n) = u(0)
∏n−1

j=1(1 + u(j)v(j))

(
√

1 + λ)n

[
λn + λn−1

(
n−1∑
j=1

1

1 + u(j)v(j)

+
n−2∑
j=1

u(j + 1)v(j + 1)

(1 + u(j)v(j))(1 + u(j + 1)v(j + 1))

+
u(1)

u(0)(1 + u(1)v(1))

)
+ · · ·

]
, (7.3)
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q(1)(n) = v(n − 1)
∏n−2

j=0(1 + u(j)v(j))

(
√

1 + λ)n

[
λn−1 + λn−2

(
n−2∑
j=0

1

1 + u(j)v(j)

+
n−3∑
j=0

u(j + 1)v(j)

(1 + u(j)v(j))(1 + u(j + 1)v(j + 1))

+
v(n − 2)

(1 + u(n − 2)v(n − 2))v(n − 1)

)
+ · · ·

]
,

q(2)(n) = u(0)v(n − 1)
∏n−2

j=1(1 + u(j)v(j))

(
√

1 + λ)n

[
λn−1 + λn−2

(
n−2∑
j=1

1

1 + u(j)v(j)

+
n−3∑
j=1

u(j + 1)v(j)

(1 + u(j)v(j))(1 + u(j + 1)v(j + 1))

+
u(1)

u(0)(1 + u(1)v(1))
+

v(n − 2)

v(n − 3)(1 + u(n − 2)v(n − 2))

)
+ · · ·

]
. (7.4)

The discrete commutative equation (3.15) satisfied by the Lax matrix Vλ is the key to straighten
out the discrete flow generated by the symplectic map ϕ. This means that the solution space
of the linear equation (2.1), Eχ = Uχ , is invariant under the action of Vλ. Let ρ and χ be
the eigenvalue and eigenfunction, respectively, of the linear operator Vλ in the solution space.
Then they satisfy

Eχ = Uχ, Vλχ = ρχ. (7.5)

It is easy to see that det(ρ − Vλ) = ρ2 + Fλ = 0. Therefore, there are two eigenvalues
ρ± = ±ρ, and

ρ =
√

R(λ)

2a(λ)
(7.6)

in view of (5.1)

Proposition 7.1. The eigenvalue ρ of the Lax matrix Vλ is the generating function of conserved
integrals {Hm} of the symplectic map ϕ.

The eigenfunctions of the Lax matrix Vλ are called the Baker functions after some kind of
normalization, which can be taken as

χ±(n) = χ(1)(n) + b±χ(2)(n), (7.7)

χ̂±(n) = c±χ(1)(n) + χ(2)(n), (7.8)

with

b± = ±ρ − V
(11)
λ (0)

V
(12)
λ (0)

, c± = V
(11)
λ (0) ± ρ

V
(21)
λ (0)

. (7.9)

Theorem 7.2. Let p±(n, λ) and q±(n, λ) be the first component of the Baker function χ±(n, λ),
and the second one of the Baker function χ̂±(n, λ), respectively. Then

p+(n, λ)p−(n, λ) = 〈p(n), p(n)〉
〈p(0), p(0)〉

N−1∏
j=1

λ − µj(n)

λ − µj(0)
, (7.10)
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q+(n, λ)q−(n, λ) = 〈�q(n), q(n)〉
〈�q(0), q(0)〉

N−1∏
j=1

λ − νj (n)

λ − νj (0)
. (7.11)

Proof. Using (3.15) and (7.2), we have

VλM(n) = M(n)Vλ(0), (7.12)

from which we derive (7.10) and (7.11). �

Proposition 7.3. For λ −→ ∞, we have

p+(n, λ) = (1 + u(0)v(0))

n−1∏
j=1

(1 + u(j)v(j))
λn

(
√

1 + λ)n
[1 + o(λ−1)],

p−(n, λ) = − 〈p(n), p(n)〉
u(0)

∏n−1
j=1(1 + u(j)v(j))

(
√

1 + λ)n

λn
[1 + o(λ−1)].

(7.13)

q+(n, λ) = v(n − 1)

〈�q(0), q(0)〉
n−2∏
j=1

(1 + u(j)v(j))
λn

(
√

1 + λ)n
[1 + o(λ−1)],

q−(n, λ) = 〈�q(n), q(n)〉
v(n − 1)

∏n−2
j=1(1 + u(j)v(j))

(
√

1 + λ)n

λn
[1 + o(λ−1)].

(7.14)

Proof. Noting (3.14) and the Laurent expansion of function, we have

ρ = 1

2
(1 − 4Hλ) = 1

2
− 2

∞∑
m=0

Hmλ−m−1 = 1

2
+ o(λ−1),

Vλ
(11)(0) = 1

2
+ Qλ(�p(0), q(0)) = 1

2
+ o(λ−1),

Vλ
(12)(0) = −〈p(0), p(0)〉(1 + o(λ−1)),

Vλ
(21)(0) = 〈�q(0), q(0)〉λ−1(1 + o(λ−1)),

which implies

b+ = ρ − V
(11)
λ (0)

V
(12)
λ (0)

= − 1

〈p(0), p(0)〉o(λ−1), (7.15)

c+ = V
(11)
λ (0) + ρ

V
(21)
λ (0)

= λ

〈�q(0), q(0)〉 (1 + o(λ−1)). (7.16)

Substituting (7.3), (7.4), (7.15) and (7.16) into the equations

p+(n) = p(1)(n) + b+p(2)(n), q+(n) = c+q(1)(n) + q(2)(n),

p−(n) = p(1)(n) + b−p(2)(n), q−(n) = c−q(1)(n) + q(2)(n),

a direct calculation shows that (7.13) and (7.14) hold. �

Proposition 7.4. The Baker function p(n, P ) is of the properties: (i) N − 1 simple zeros at
µ1(n), . . . , µN−1(n) and a pole of the n-order at ∞2 on the upper sheet of �; (ii) N −1 simple
zeros at µ1(0), . . . , µN−1(0) and a zero of the n-order at ∞1 on the lower sheet of �.
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Proposition 7.5. The Baker function q(n, P ) is of the properties: (i) N − 1 simple zeros at
ν1(0), . . . , νN−1(0) and a pole of the n-order at ∞2 on the upper sheet of �; (ii) N − 1 simple
zeros at ν1(n), . . . , νN−1(n) and a zero of the n-order at ∞1 on the lower sheet of �.

Theorem 7.6. The discrete flows are straightened out by the Abel–Jacobi coordinates

�φ(n) = φ(n + 1) − φ(n) = �ϕ (mod T ), (7.17)

�ψ(n) = ψ(n + 1) − ψ(n) = �ϕ (mod T ), (7.18)

where

�ϕ =
∫ ∞2

∞1

ω.

Proof. Consider the meromorphic differential on �

ωϕ(n) =
{

d

dλ
ln p(n, P )

}
dλ, (7.19)

which has poles at µj(n) and µj(0) with the residue 1 and −1, respectively, and poles at ∞2

and ∞1 with the residue −n and n, respectively. Differential (7.19) can be expressed as a
linear combination of the normalized differential ωj of the first kind, the differential � of the
second kind and the normal differential ω(P,Q) of the third kind with residue 1 and −1 at P
and Q. These differentials have the properties∫

aj

ω(P,Q) = 0,

∫
bj

ω(P,Q) = 2π
√−1

∫ P

Q

ωj . (7.20)

Then (7.19) can be written as

ωϕ(n) = � + nω(∞1,∞2) +
N−1∑
j=1

ω[µj(n), µj (0)] +
N−1∑
j=1

γjωj , (7.21)

where γj are some complex numbers. The integral of (7.19) along ak gives γk = 2π
√−1nk,

while the integral of (7.21) along bk yields
N−1∑
j=1

∫ µj (n)

µj (0)

ωk = n

∫ ∞2

∞1

ωk +
N−1∑
j=1

(δjkmj − njBjk), 1 � k � N − 1, (7.22)

where nj and mj are certain integers. Therefore, (7.17) holds.
In a similar way, we consider the meromorphic differential on �

ω̂ϕ(n) =
{

d

dλ
ln q(n, P )

}
dλ, (7.23)

we can prove that
N−1∑
j=1

∫ νj (n)

νj (0)

ωk = n

∫ ∞2

∞1

ωk +
N−1∑
j=1

(δjkm̂j − n̂jBjk), 1 � k � N − 1. (7.24)

This completes the proof of this theorem. �

Corollary 7.7.

φ(n) − φ(0) = n�ϕ (mod T ), (7.25)

ψ(n) − ψ(0) = n�ϕ (mod T ). (7.26)
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Based on theorems 6.1, 7.6 and corollary 7.7, the compatible solutions of various flows
under the Abel–Jacobi coordinates can be obtained simply through a linear superposition.
Therefore, the discrete nonlinear evolution equations (2.6) (m � 1) and (2.7) possess the
compatible solutions under the Abel–Jacobi coordinates:

φ(n, t0, tm) = n�ϕ − t0�0 − tm�m + φ0,

ψ(n, t0, tm) = n�ϕ + t0�0 + tm�m + ψ0, m � 1.
(7.27)

8. Quasi-periodic solutions

In order to give explicit solutions of (2.6) in the original coordinate, the following steps should
be completed: (φ,ψ) −→ (µj , νj ) −→ (u(n), v(n)). According to the Riemann theorem
[30–32], there exist constant vectors M1 and M2 ∈ CN−1 such that θ(A(P (λ)) − φ − M1)

has exactly N − 1 zeros at λ = µ1, . . . , µN−1 and θ(A(P (λ)) − ψ − M2) has exactly N − 1
zeroes at λ = ν1, . . . , νN−1 . And we have the inversion formula

N−1∑
j=1

µj = I1(�) −
2∑

s=1,λ=∞s

Res λ d ln θ(A(P (λ)) − φ − M1), (8.1)

N−1∑
j=1

νj = I1(�) −
2∑

s=1,λ=∞s

Res λ d ln θ(A(P (λ)) − ψ − M2) (8.2)

with the constant

I1(�) =
N−1∑
j=1

∫
aj

λωj .

For the same λ, there are two points on different sheets of the Riemann surface �. Under the
local coordinate z = λ−1, noting (6.9), (5.15) and (6.2), we have

ω = Cω̃ = (−1)s+1
∞∑

k=0

�kz
k dz, (8.3)

A(P (z−1)) = −ηs − (−1)s
∞∑

k=0

1

k + 1
�kz

k+1 (8.4)

with

ηs =
∫ P0

∞s

ω.

Since the theta function is an even function, we have

θ(A(P (z−1)) − φ − M1) = θ(φ + M1 + ηs) − z(−1)s
∂

∂t0
θ(φ + M1 + ηs) + o(z2),

θ(A(P (z−1)) − ψ − M2) = θ(ψ + M2 + ηs) + z(−1)s
∂

∂t0
θ(ψ + M2 + ηs) + o(z2).

(8.5)

From (8.1), (8.2) and (8.5), we arrive at

N−1∑
j=1

µj = I1 +
∂

∂t0
ln

θ(n�ϕ − t0�0 − tm�m + π2)

θ(n�ϕ − t0�0 − tm�m + π1)
, (8.6)
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N−1∑
j=1

νj = I1 +
∂

∂t0
ln

θ(n�ϕ + t0�0 + tm�m + π̂1)

θ(n�ϕ + t0�0 + tm�m + π̂2)
(8.7)

in view of (7.27), where constants

πs = φ0 + M1 + ηs, π̂s = ψ0 + M2 + ηs, s = 1, 2.

Putting (8.6) and (8.7) into (5.7) and integrating once with respect to t0 yield

〈�p, q〉 = κ1
θ(n�ϕ − t0�0 − tm�m + π1)θ(n�ϕ + t0�0 + tm�m + π̂1)

θ(n�ϕ − t0�0 − tm�m + π2)θ(n�ϕ + t0�0 + tm�m + π̂2)
− κ0 (8.8)

with a constant of integration κ1. Substituting (8.6)–(8.8) into (5.8) and integrating
once with respect to t0, we obtain explicit solutions of the discrete nonlinear evolution
equations (2.6) (m � 1) and (2.7) under the original coordinates u(n) and v(n). Especially, for
m = 1, these explicit solutions solve the following (2+1)-dimensional nonlinear differential-
difference equation (t0 = y):

u(n)t = u(n)yy − 2�
u(n)2v(n − 1)

(1 + u(n)v(n))2(1 + u(n − 1)v(n − 1))
,

v(n)t = −v(n)yy + 2�∗ u(n + 1)v(n)2

(1 + u(n)v(n))2(1 + u(n + 1)v(n + 1))
.

(8.9)

In fact, from (2.7) we have

�
1

1 + u(n)v(n)
�

u(n)

1 + u(n)v(n)
= u(n)yy + �

u(n)v(n)u(n)y + u(n)2v(n)y

(1 + u(n)v(n))2
(8.10)

and

u(n + 1)

1 + u(n + 1)v(n + 1)
= u(n)y +

u(n)

1 + u(n)v(n)
,

v(n − 1)

1 + u(n − 1)v(n − 1)
= −v(n)y +

v(n)

1 + u(n)v(n)
.

(8.11)

Substituting (8.10) and (8.11) into (2.8) yields the first expression of (8.9). Similarly, we can
prove the second expression of (8.9).

In what follows, we now discuss the continuous limit of (8.9). Noting (2.9), we obtain

iu(n)t = iu(n)yy + 2(u(n)2v(n))xh
3 + 2(u2

xv + uvuxx − 1
2u2vxx)h

4 + o(h4),

v(n)t = −v(n)yy − 2i(v(n)2u(n))xh
3 + 2i(v2

xu + uvvxx − 1
2v2uxx)h

4 + o(h4).

Let Y = h2y, T = ih4t, X = hx. Then we obtain a (2+1)-dimensional coupled DNLS
equation by taking h → 0

iuT − uYY + 2i(u2v)X = 0, ivT + vYY + 2i(v2u)X = 0, (8.12)

which is reduced to the (2+1)-dimensional DNLS equation (1.7) as u = v∗.
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